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ABSTRACT 

Most previous theoretical treatments of displacement chromatography have been confined to sys- 
tems that follow the competitive Langmuir isotherm. With the assumption of such idealized multi-compo- 
nent adsorption behavior, in a sufficiently long column the final outcome of the process is always expected 
to be an isotachic displacement train having a series of adjacent separated bands of increasing concentra- 
tion. Several recent reports, however. suggest that no such train forms when the single-component isother- 
ms of the separands cross. In order to examine the possibility of separation under such conditions, the 
stability of the isotachic pattern is analyzed and criteria for displacement and for stability of the resulting 
boundaries are established. The approach requires the knowledge of the multi-component isotherm that 
governs the adsorption of the separands. As the competitive Langmuir isolherm completely fails to repre- 
sent such behavior. the pertinent multi-component isotherms are generated from Langmuir single-compo- 

nent isotherms within the framework of the ideal adsorbed solution model. The results obtained with such 
a multi-component isotherm in binary separations show that three operating regions in displacement 
chromatography can be identified when the single-component isotherms of the separands cross. In one 
region at sufficiently low concentrations. the two components separate and appear in the same order as in 
linear chromatography. In a second region at sufficiently high concentrations. the bands are predicted to 
separate but appear in the reverse order. In the third region at intermediate concentrations, complete 
separation is not possible, and the resulting isotachic pattern contains a mixed zone. The stability analysis 
presented here facilitates the prediction of the outcome of displacement without the need for arduous 
computation; it is fairly general and may be applied to systems that follow other multi-component isother- 
ms. 

INTRODUCTION 

Displacement is one of the three operational modes of chromatography identi- 
fied by Tiselius [1,2]. In it, a feed mixture is followed into the column by a solution 
containing a substance called the displacer, which binds so strongly to the stationary 
phase that it drives the feed components ahead of its front. Under favorable condi- 
tions, the components eventually separate into adjacent bands that all move at the 
velocity of the displacer front, thus forming an isotachic pattern known as the dis- 
placement train. Displacement is a non-linear chromatographic method; the displacer 
and separand concentrations have to be high enough that the equilibrium relation- 
ship governing the simultaneous adsorption of the components. i.e., the multi-com- 
ponent adsorption isotherm, is both competitive and non-lineur. As a consequence, 
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migrating molecules interfere strongly with one another as they traverse the column 
and, under appropriate conditions, the interference facilitates separation. This is in 
contrast with linear elution chromatography, most commonly employed in analytical 
practice, where concentrations are kept low so that adsorption isotherms are linear 
and components migrate through the column without interference. 

The rudiments of the displacement process were already recognized by Tswett 
in 1906, but it was not until the Tiselius’ formal classification and the pioneering work 
of Gliikauf [3] that its principles were placed on a firm footing. Ghikaufs theoretical 
approach was quite general, but, for the sake of mathematical simplicity, he used only 
the competitive Langmuir isotherm. The subsequent treatment of Helfferich and 
Klein [4] also hinged upon the use of this isotherm. As a result. the prevalent under- 
standing of non-linear chromatography in general and displacement chromatography 
in particular was, until recently, restricted to systems that would obey the competitive 
Langmuirian model. 

However, the competitive Langmuir isotherm model is valid only when the 
saturation capacities of the stationary phase for all the various adsorbing components 
are identical, and thus it has very limited practical relevance. Another characteristic 
feature of this model is that the selectivity between any pair of components is con- 
stant, independent of concentration. As a consequence, the requirements for a dis- 
placement separation would merely be that the displacer be retained more strongly 
than the feed components and that its concentration be above a certain minimum 
value [3]. Then, in the absence of axial dispersion and given a suitably long column, a 
displacement train would eventually be formed, with the components fully separated 
and arranged in order of increasing initial slopes of their respective single-component 
isotherms. 

Early success [5,6] and the implicit assurance from theory that separation would 
be achieved upon fulfilling such simple criteria encouraged experimental efforts in the 
1940s and 1950s. Displacement chromatography was used for a brief period to sep- 
arate a variety of compounds, from petroleum products to rare earths and biochem- 
icals (see refs. 7 and 8 for reviews). Thereafter it was overshadowed by the devel- 
opment of linear chromatography and, after a hiatus of more than 20 years, was 
revived in the early 1980s [9-l 11. The efficient columns and sorbents of today’s high- 
performance era have made displacement chromatography practicable, and it has 
established itself in a number of preparative applications, including the purification of 
antibiotics, peptides and even proteins (see refs. 8 and 12 for reviews). 

On the other hand, when the method has failed, researchers have been per- 
plexed and frustrated. Recent experimental studies, both from this and from other 
laboratories, have shown that displacement is likely to be unsuccessful if the single- 
component isotherms cross one another when drawn on the same plane [ 13-161. In an 
adsorption process it is generally true that larger molecules bind more strongly to the 
sorbent than smaller ones and their individual isotherms therefore have a larger initial 
slope. However, because the larger molecules may occupy more space on the surface 
of the sorbent they would be expected to have lower saturation capacities, in molar 
terms. Isotherms of larger and smaller molecules would therefore often cross. Indeed, 
from these considerations, crossing isotherms are more likely to be the rule than the 
exception, and a thorough investigation is necesary to gain insight into the mecha- 
nisms that dictate the sucess or failure of displacement processes under such circum- 
stances. 
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In many instances, the isotherms of the components often individually fit the 
Langmuir single-component model. However, because of the different saturation ca- 
pacities of the components, the competitive. or multi-component Langmuir isotherm 
model is not thermodynamically consistent [ 17-191 and, even when forced into service 
despite this limitation, cannot account for the observed behavior. This was noticed in 
an early qualitatiative study by Tiselius’s group [20], where it was found that the 
selectivity between a feed component and the displacer may actually reach unity and 
even undergo a reversal, leading to the loss of a sharp front between displacer and 
feed component. 

Evidently, adsorption isotherms other than the competitive Langmuir model 
are needed to describe such behavior. One means of generating thermodynamically 
consistent multi-component isotherms from single-component data is provided by 
the ideal adsorbed solution (IAS) method, introduced first for gas-solid adsorption 
[21] and later extended to liquid systems [22]. Using the IAS approach, it has been 
shown that selectivity inversion, i.e., the reversal in the order of band appearance on 
going from low to high concentration, may occur in systems where the respective 
single-component isotherms cross [23]. The treatment of Frey [24], which is based on 
considerations of free energy consumption at concentration discontinuities within the 
column and requires information only about single-but not multi-component isother- 
ms, also implies selectivity reversal in such systems. What is not clear from either 
study, however, is whether complete separation always occurs in the final pattern, or 
if a mixed band, indicative of an adsorption azeotrope, or “adsorbotrope”, forms 
instead. 

Here we tackle afresh the issue of selectivity reversal and the formation of 
azeotropes by analyzing the stability of the displacement train. The approach is gen- 
eral and may be applied also to other multi-component isotherm formalisms. The 
Langmuir and IAS multi-component isotherms are compared for their ability to 
predict the observed behavior and their advantages and shortcomings are exposed. 

THEORY 

In developing our theory, we shall assume that conditions of “ideal” chromato- 
graphy prevail, i.e., there is no axial dispersion and instantaneous equilibrium is 
reached everywhere in the column. This allows us to focus on the fundamental char- 
acteristic that distinguishes non-linear processes, such as displacement, from linear 
chromatography, viz., the effect of the competitive adsorption behavior. This as- 
sumption has been used in the past and found to provide respectable approximations 
to observed behavior in non-linear systems [3]. 

For brevity, single-component adsorption isotherms will be referred to either as 
“SC” or as “parent” isotherms, and multi-component isotherms as “MC” isotherms. 
As we are concerned for the most part with liquid chromatography, it is understood 
that the term “SC isotherm” alludes to the adsorption of a component from a solvent 
that by definition is assumed to be absent from the adsorbed phase [25,26]. We shall 
restrict our attention to SC isotherms that can be fitted to the one-component Lang- 
muir model, given for a component i by [27] 

/libiCi 
qi = 1 + bici 
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where qi and ci are the concentrations of i in the stationary and and mobile phases, 
respectively, and ;li and bi are the pertinent isotherm parameters; ii represents the 
largest possible value of qi, and is known as the saturation capacity of the stationary 
phase for component i. The initial slope of this isotherm is ai s&hi. In liquid chroma- 
tography, SC isotherms of the separands and displacer can often be fitted successfully 
to eqn. 1 [28-301. We use such isotherms for the sake of simplicity; the results of our 
treatment can be extended to many cases where the SC isotherms are not so well 
behaved. However, additional factors must be taken into account when the isotherms 
have features such as inflection points, and these are not addressed here. 

We have already referred to the competitive Langmuir model, which is an 
example of a multi-component or MC isotherm which is constructed to describe the 
simultaneous adsorption of Several components. In general. such an isotherm must be 
obtained by fitting an appropriate function to equilibrium adsorption data over the 
composition range of interest. This is a tedious task, however. and only very few such 
measurements have been made in liquid chromatographic systems [31,32]. For short- 
age of experimental data multi-component adsorption behavior is usually described 
by a formalism that uses parameters derived from SC isotherm data. In the past, the 
competitive Langmuir equation has been widely used in the past for this purpose and 
is given by [33] 

ilibici 
qi = 

1 + i bjcj 

i = 1.2....,n (2) 

j=l 

where n is the total number of adsorbed components. In eqn. 2, as with all MC 
isotherms, the stationary phase concentration of a component i is a function of the 
mobile phase concentrations of all the components the system and it can be repre- 
sented by an n-dimensional surface in an (n + 1)-dimensional space. 

One remarkable feature of the competitive Langmuir model is that it predicts a 
constant selectivity for any two components, regardless of their respective concentra- 
tions or that of any additional components. The selectivity. or separation factor, for 
two species A and B, a BA, is defined as the ratio qBcA/qAcB. Constant selectivity is what 
makes the competitive Langmuir isotherm attractive for mathematical treatment, but 
is an artifact which narrowly restricts the applicability of the model. 

A property that is common to most MC isotherms is that the isotherm of one 
component, when measured in the presence of a fixed concentration of another, is 
“suppressed” compared with its SC isotherm, i.e., it has a lower initial slope and 
possibly also a lower saturation level as well. This suppression has important conse- 
quences in displacement, as we shall see later. 

The competitive Langmuir model is valid only in the case where the SC sat- 
uration capacities for all n components are equal, i.e., when 

11 =e..= Ri =...= Iin = R (3) 

Nevertheless, because of its mathematical simplicity, eqn. 2 has often been used even 
when eqn. 3 does not hold. In such cases, however, eqn. 2 fails to satisfy the Gibbs 
adsorption equation and therefore violates the second law of thermodynamics [ 17- 
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191. Consequently, any predictions about non-linear chromatography obtained by 
applying eqn. 2 in this manner are of dubious value. 

With these preliminary remarks. we now turn our attention to displacement 
chromatography. The salient feature of displacement, according to the Tiselian con- 
cept [I], is that in the process the various feed components separate into a series of 
successive bands, followed by the displacer, all moving at the same velocity. When the 
isotachic conditions is achieved, the characteristic velocity of the train is the species 
velocity of the displacer, ub, given by [4] 

where u, is the velocity of the bulk mobile phase, q$ and c& are the equilibrium 
concentrations of the displacer in the stationary and mobile phases, respectively, and 
4 is the phase ratio. Under isotachic conditions, the species velocities of all the pure 
components, A, B, etc., in the displacement train are identical, so that 

As each band contains a single feed component, their concentrations in the dis- 
placement train are determined graphically from the points at which the respective 
single-component isotherms intersect the so-called “operating line” having slope A 
and intercept zero. It follows that in order for a species to be part of the displacement 
train. its single-component isotherm must not lie wholly below the operating line. 
This is Gliikauf s condition for displacement [3]. 

For predicting behavior in displacement chromatography, one consequence of 
using the competitive Langmuir model given by eqn. 2 is that Ghikauf s condition is 
sufficient to ensure a successful displacement separation. Thus, if the system were to 
follow the Langmuir MC isotherm, the ultimate outcome of a displacement run can 
be completely determined from the SC isotherms and the operating line. according to 
the picture described above. 

Whereas this beguilingly simple construction seems wholly adequate in many 
instances [X,9,34], it appears to break down when the parent isotherms of the sep- 
arands cross one another. Experimental results under such conditions show only 
partial, or no, separation even when Ghikaufs conditions is met [14- 161. 

Conditions for establishment qf the displuwm~wt train 
Evidently, in the case of crossing SC isotherms. Gliikauf s condition is insuffi- 

cient. and the model with the Langmuir MC isotherm fails. Consequently, another 
MC isotherm function is required and new conditions for displacement must be 
formulated. First, we intend here to derive such conditions from an analysis of the 
stability of the displacement train; an appropriate MC isotherm is discussed later. 
The stability analysis is fairly general and applicable to most MC isotherms generated 
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from monotonically concave downward SC isotherms which have no inflection 
points. Extension to other more complex SC isotherm shapes may be possible but 
requires further investigation. The analysis is prefaced with the following comments. 

In an ideal chromatographic system with concave downward parent isotherms, 
as long as Ghikaufs conditions is met and an appropriate displacer is chosen, all 
displacement processes will, in a column of sufficient length, attain the isotachic state. 
This happens because Gliikaufs condition ensures that the individual feed compo- 
nents would, on their own, move slower than the displacer. However, the displacer 
does not allow any feed components behind its front, and so forces the components to 
move at its velocity; any differences in local velocity of the feed components eventu- 
ally disppear. (It suffices for present purposes that the displacer be one whose iso- 
therm completely overlies that of the feed components; a more general idea of an 
“appropriate” displacer will emerge from the following discussion.) In the terminol- 
ogy of Helfferich and Klein [4], the train reaches a “coherent” state, i.e., all concen- 
tration discontinuities in the system propagate at a constant velocity, and the veloc- 
ities of the bands on either side of these boundaries meet the coherence conditions. In 
the following discussion it will be assumed that the coherence and Ghikauf condi- 
tions, together termed the “zeroth” displacement conditions, are satisfied. 

Stability of the displacement train 
The desired outcome of a displacement experiment is the completely separated 

coherent pattern predicted by the Tiselian model. However, as seen experimentally in 
the case of crossing isotherms, it does not appear that this state is always achieved. 
One may then ask whether there are other possible coherent states and, if so, which of 
them is the likely result in a given displacement run? The answer to this question will 
be sought here by carrying out “Gedanken experiments” to examine the stability of 
the Tiselian train. If the train is found to be stable to small perturbations, there exists 
by implication a driving force that propels the system towards and maintains it in the 
separated state. This is not to say that such stability guarantees the formation of the 
separated state from every previously mixed state, but that there is at least a pathway 
towards separation from the perturbed state. If the train is not stable, such a driving 
force is absent and the separation cannot proceed to completion, so that some al- 
ternative coherent state containing mixed bands may result. 

Consider a displacement train with a pair of successive bands of feed compo- 
nents A and B which are separated by a sharp boundary. The respective concentra- 
tions of the pure bands are cl and c8 as dictated by the operating line given by eqn. 5. 
In the first “Gedanken experiment”, imagine that a trace amount of the leading 
component, A, is brought into the domain of the trailing component B without 
noticeably changing the concentration of either band. For the system to return to the 
sharply separated state, the velocity of that trace of A must be greater than the 
characteristic velocity of the displacement train. 

The velocity of A under these conditions is given by 

(6) 
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where the superscript 0 and the subscript cB = cB indicates that the quantities are 
evaluated as CA -+ 0 and at cg = c& For the system to be stable to the perturbation, it 
therefore follows that 

where A is the ratio q$L/cg or qX/cX as determined by the operating line (see eqn. 5). 
In a second “Gedanken experiment”, let us consider that a trace amount of the 

trailing component B encroaches into the domain of the leading component A. Fol- 
lowing an argument similar to that above the condition for stability in this case is 

0 qBo >A - 

CB . 
c =c 

A A 

Eqns. 7 and 8 will be termed the first and second stability conditions, respectively. 
Note that in the eqns. 7 and 8, cx and CR* depend on d. 

When both stability conditions are satisfied the boundary between A and B is 
stable to small perturbations. Unlike Gliikaufs condition which is determined solely 
from the parent single-component isotherms, the terms (qA/c*)’ 

CB=C* 
and (qB/cB)’ . in 

c =c 

the stability conditions expressed by eqns. 7 and 8 depend on tht multi-com{on&t 
isotherm that describes the simultaneous adsorption of the components. As we shall 
see later, the stability conditions will be used to determine the result of a displacement 
run. It ought to have been obvious that the outcome should depend on the MC 
isotherm, and not just the SC isotherms. In the past, however, this fact has been 
clouded by the employment of the competitive Langmuir isotherm because only this 
MC formalism allows the final pattern to be determined from the SC isotherms alone. 

A closer examination shows that the first stability condition, eqn. 7, is an alhr- 
mation of the driving force for displacement, i.e., the trailing component, B, must 
suppress the isotherm of the leading component, A, sufficiently so that it is never 
allowed to fall behind. The second condition, eqn. 8, essentially ensures that the front 
of B is self-sharpening. In the absence of the leading component the front of B would 
self-sharpen naturally because of its concave downward isotherm [4]. Since as a rule A 
also suppresses the isotherm of B, the condition assures that the self-sharpening effect 
is still operative. 

Whereas an SC isotherm is a line on a two-dimensional plot, an MC isotherm of 
a binary mixture, as mentioned before, is represented by a pair of two-dimensional 
planes in a three-dimensional space. However, little information can be gained from 
such illustration of the MC isotherms, and a graphical analysis of displacement is 
facilitated by projecting certain key features from the three-dimensional space to a 
two-dimensional plot of cg versus CA, which is known as a “hodograph”. In order to 
visualize the stability conditions graphically, we consider points on the hodograph at 
which the stability criteria are just satisfied. For the first conditions this point is 
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and for the second 

qB 
0 

_ q*A 0 -- - 
CB C&==c* 4 

A 

In the hodograph, eqns. 9 and 10 represent points along the cR and cA axes, respec- 
tively, at which the selectivity, IxBA, is unity. The two conditions in eqns. 7 and 8 thus 
indicate that a final pattern of complete separation in which the bands have the order 
AB is stable when the selectivities at the points (0, cg*) and (cx, 0) in the hodograph 
both exceed unity. On the other hand, if the selectivities at both of these points are 
lower than unity, a train with the order BA is predicted to be stable. However, the 
stability conditions are violated if the respective selectivities at (0, cg*) and (~2, 0) are 
greater and lower than unity, or rice versa. As a result, under these conditions the 
final pattern of complete separation is unstable, and some alternative coherent state 
will be reached. The problem of determining the stability of the displacement train 
thus reduces to that of finding the points of unit selectivity, if they exist at all, on the 
cg and CA axes, and ensuring that the lcoations of (0, c$) and (cx, 0), as dictated by the 
operating line, lie on the appropriate sides of line connecting these points. Graphical 
illustrations of the analysis are shown later. 

Multi-component isotherms generated by the IAS method 
The constant selectivity feature of the competitive Langmuir isotherm pre- 

cludes any possibility of finding in the hodograph points or regions of unit selectivity 
(except in the degenerate case where the SC isotherms are identical), and thus makes 
any discusison of stability pointless: with this MC isotherm, as long as the zeroth 
conditions are satisfied. all displacement trains are stable, and the only final patterns 
reached are those of complete separation. In practice, constant selectivity is unlikely 
to be realized, and MC isotherms that allows for variable selectivity are necessary. 

As already mentioned, the Langmuir MC isotherm violates the Gibbs adsorp- 
tion equation unless eqn. 3 is satisfied. The Gibbs equation relates adsorbed amounts 
to the spreading pressure, defined as the difference of the interfacial tensions between 
the multi-component solution-sorbent and the pure principal solvent-sorbent sys- 
tems. The ideal adsorbed solution (IAS) method, so called because it uses an analogue 
of Raoult’s-law ideality to describe the adsorbed phase, provides a framework to 
generate a multi-component isotherm that satisfies Gibbs equation from any set of 
single-component isotherms [21,22]. The antecedents of this approach and a useful 
general result are presented in Appendix A. Our interest here is to use the IAS method 
to obtain multi-component isotherms from Langmuir parent isotherms. In this case 
the calculation proceeds in two steps (see Appendix A ). First, the reduced spreading 
pressure, I7, is determined for the given set of Langmuir SC isotherm parameters and 
concentrations of the components in the mobile phase from the implicit equation (see 
Appendix A) 

n 

c hjCj 

eXp(II/ilj) - 1 = ’ 
j=l 

(11) 
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The numerical solution of eqn. 11 is greatly facilitated by using as an initial guess the 
approximation to LI put forward by LeVan and Vermeulen [19]. Next, for a known 
value of K7, the multi-component isotherm is calculated from 

4i= n 

hiCi/[eXp(n/fii) - I] 
i= 1,2,....n (12) 

2 hjCjeXp(H/lj)/{ij[eXp(l7/lj) - 11’) 
j=l 

The relationship given in eqn. 12 is hereinafter termed the IAS/L isotherm. In the case 
where eqn. 10 is satisfied, eqn. 12 reduces to the competitive Langmuir isoherm (eqn. 
9) which is therefore a special case of the IAS/L equation. 

Cornputution of displacement profiles 
The stability criteria have been applied to the displacement of a binary mixture 

in the light of [AS/L isotherms. The results are illustrated by computer simulations of 
displacement profiles under various conditions. Exact solutions for the ideal case, i.e., 
without dispersion in the system, cannot he found; instead. the calculations are car- 
ried out using the so called “semi-ideal” nir,tlel 135,361. The finite difference scheme 
for the solution of the resulting first-order pal ti,ll tlifferential equations introduces a 
numerical error that can be made to approximate the d&red amount of dispersion in 
the system, quantified by a plate number N (= u0L/2P, where L is the column length 
and g the effective axial dispersion coefficient that accounts for all dispersive process- 
es in the system; II’ is also equal to L/H, where H is the plate height). The numerical 
scheme also introduces some additional errors but at sufficiently high values of N 
these do not significantly effect the calculations [36]. For convenience, in the calcula- 
tions it is assumed that the phase ratio is unity. In addition, a constant plate height 
was used, so that the plate number gives an indication of the column length required. 
The results are presented as plots of the oullet concentration of the components 
versus the column volumes of mobile phase that have passed through the system. 
Note that with this representation, as long as the plate number is fixed, the actual 
values employed for the plate height and flow-rate need not be specified. 

RESULTS AND DISCUSSION 

Our goal here is to use the stability criteria put forward above to examine in 
detail the deviations from the classical Tiselian displacement picture observed when 
the parent isotherms of the separands cross. For this purpose, we shall consider the 
separation of pairs of components A and B, whose single-component isotherms in- 
tersect, as depicted in Fig. la. The displacement will be driven by a displacer whose 
isotherm overlies those of the separands. As the stability criteria are general, they 
ought to be applicable to any displacement system. For simplicity, however, we shall 
confine our attention to those that obey the IAS;L multi-component isotherm given 
in eqn. 12. In Appendix B, the treatment is extended to systems obeying another 
thermodynamically consistent MC isotherm; the results differ only marginally from 
those obtained with the IAS,iL isotherm. 
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Fig. 1. (a) Plots of crossing single-component isotherms of components A and B and (b) the corresponding 
line of unit selectivity in a hodograph. The latter was calculated from eqn. 15 with the isotherm parameters 
il, = 150 pmoliml sorbent, h, = 0.15 limmol, ie = 75 pmol ‘ml sorbent. h, = 0.62 I/mmol: c, was 
obtained as 14.22 mM. 

SelectivitJy inversion 
As is evident from eqns. 9 and 10, a stability analysis is necessary only in those 

systems where the selectivity between the separands becomes unity at some points. In 
general, for separands A and B, such points define a line that demarcates regions of 
opposite selectivity in the hodograph space. We must therefore first examine under 
what conditions such regions exist. 

The IAS/L isotherm allows for variable selectivity and can be used in the de- 
scription of systems where selectivity inversion takes place [23]. It must be noted at 
the outset that, as with all MC isotherms generated only from SC isotherm data, the 
predictive power of the TAS/L isotherm is limited to “well behaved” systems. In case 
of the IAS method, “well behaved” implies that activity coefficients of the compo- 
nents in the moble and adsorbed phases are close to unity (for definition of adsorbed 
phase activity coefficients, see refs. 37 and 38). Even with this restriction, however, the 
IASiL isotherm represents a distinct improvement over the competitive Langmuir 
isotherm, which cannot describe systems with changing selectivity. 

From eqn. 12, the selectivity between two components, xBA, is given by 
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where Il is a function of the concentrations cA and cB and is determined from eqn. 11. 
To locate points of unit selectivity, a BA is set to unity in eqn. 13; the result is an 
implicit equation that can be solved for II’, the reduced spreading pressure that 
corresponds to all points of unit selectivity: 

bBbP(n’ILd - 11 1 

-- zz 

Mev(~‘IM - 11 (14) 

Introducing 17’ into cqn. 11 and multiplying the result by [exp(lT’/IJ - l]/bA yields 

cA + cB = bMn’/M - 11 = 
hA - cx (15) 

In Appendix A, eqn. 15 is generalized for all MC isotherms generated by the IAS 
method, regardless of the shape of the parent isotherms. The result expresses an 
important property of the IAS isotherms: all points of unit selectivity between two 
components, if they exist at all, are connected by a straight line of slope - 1 on a 
hodograph. The unit selectivity line intersects both the cA and cR axes at the value c,. 
which is given by [exp(n’/&) - I]/hA in the case of the IASjL isotherm. 

An analysis of eqn. 14 shows that it has a real solution for II’ only if he > bA, 
then & < j.* and rice r~‘r.r’su. When the parent isotherms of A and B cross, i.e., &,bR > 
iAbA, and ,&, < 1-A or vice versa. these criteria for a real solution for n’ are always 
satisfied. It would appear that they could also be satisfied without requiring the SC 
isotherms to intersect. However, in order to be physically acceptable, n’ must be 
positive (see eqn. 15), and this is found to occur only* when the isotherms cross. Thus, 
according to the IASiL isotherm model, selectivity inversion occurs only when the 
parent isotherms of the two components cross and the two regions of opposite selec- 
tivity are demarcated by a line of unit selectivity with slope - 1 in the hodograph 
space. 

A pair of crossing single-component isotherms and the corresponding unit se- 
lectivity line in a hodograph are shown in Fig. la and b, respectively. It is seen that 
whenever the sum of the concentrations cg + CA is less than c,, the selectivity, ?&A, is 
greater than unity, i.e., zBA > I, and rice wrm. The two regions will be termed the 
regions of original and reversed selectivity, respectively. Fig. 1 also shows that the 
concentrations corresponding to points of unit selectivity along the cR and cA axes do 
not coincide with the intersection point of the parent isotherms. Indeed, this latter 
intersection point on two-dimensional plots has no physical significance per se. With- 
in the hermeneutics of the IAS method the true concentration of unit selectivity, c,, can 
be found by numerically solving eqn. 14 for ll’ and substituting the result in eqn. 15. 

The dependence of c, on the initial selectivity, i.e., the selectivity at infinitesimal 
concentrations of both components A and B. a0 (= &bB/AAbA. or QB/UA, the ratio of 
the Henry’s_law constants), is plotted for different values of the ratio of the saturation 
capacities 3-B/j&A in Fig. 2. The results indicate that for a fixed saturation capacity 
ratio, c, increases with increasing c1’, whereas for fixed x0, c, decreases with decreas- 
ing AB/,lA. This is the same trend expected for the intersection point of the parent 
isotherms, and hence one may formulate a crude rule of thumb: if the sum of the 
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Fig. 2. Plots of the total concentration of unit selectivity, c,. versus the initial selectivity ~1” = a,/~,, 
calculated from eqn. 1.5 for the parameter values shown. The trends predicted in this diagram are indepen- 

dent of the actual parameter values chosen. 

concentrations of the two components do not exceed that of the intersection point at 
any location in the column, selectivity in version is avoided altogether. This is valid 
for all three modes of frontal, elution or displacement chromatography. Our results 
show that, within the framework of the IAS/L isotherm, the true selectivity reversal 
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Fig. 3. (a) Crossing SC isotherms of components A and B, and the displacer, along with operating lines, 
and (b) the corresponding hodograph showing tie lines and the unit selectivity line. The operating and tie 
lines shown demarcate the space into three operating regions. as discussed in the text. Displacer param- 
eters: I, = 150 pmol/ml sorbent. h, = 0.5 l/mmol; other parameters as in Fig. 1. 
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concentration, c,, is always greater than the apparent crossing point, and the rule of 
thumb is therefore always conservative. 

Displacement chromatograp~~y with crossing isotherms 
More precise rules for displacement chromatography can be formulated by 

considering the stability conditions in eqns. 7 and 8. Consider the displacement of a 
mixture of two components A and B whose SC isotherms cross, and whose multi- 
component isotherm follows the IASiL equation. The isotherms of A, B and that of a 
displacer are shown in Fig. 3a and a corresponding hodograph of CA rersus cn is 
depicted in Fig. 3b. Operating lines are drawn on the isotherm plot from the origin to 
the point on the displacer isotherm corresponding to the displacer concentration. 
Two such lines are shown in Fig. 3a. The operating lines transformed into the ho- 
dograph space are termed here “tie lines” and are shown on the hodograph in Fig. 3b. 
It is seen that each tie line is constructed from an operating line and connects the 
concentrations ca and CA determined by the intersection of the operating lines with the 
respective parent isotherms. A tie line merely serves to highlight the concentrations cl 
and c$ on the axes of the hodograph that are the predicted concentrations of the 
bands in a completely separated Tiselian displacement train; apart from this it does 
not appear to have physical significance within the hodograph space. The unit selec- 
tivity line, c,.r + CA = c, is also drawn on the hodograph. The two tie lines and 
corresponding operating lines shown are for the cases where cX = c, and ct = c,. 

As mentioned in the discussion following eqn. 10, the stability conditions in- 
dicate that a separated isotachic sequence AB is stable if the corresponding concen- 
trations CX and c$ both lie below the line of unit selectivity, i.e., below the tie line 
passing through ca = cX_ On the other hand, when both CX and ci: lie above the unit 
selectivity line, i.e., when the tie line lies above the one passing through cg = rX, a 
stable isotachic pattern with the opposite order, in this case BA, is expected. Further. 
the stability conditions require that when CX and CB lie on opposite sides of the unit 
selectivity line, i.e., the operating lines and corresponding tie lines lie between those 
shown in Fig. 3a and b, a complelely separated pattern is not obtained. The operating 
region between these lines will be termed the “separation gap”. Operating lines to the 
left of the gap yield displacement trains with original selectivity and those to the right 
of it trains with reversed selectivity. In the gap, no complete separation is possible. 
The construction in Fig. 3 allows us to visualize on a plot of the SC isotherms the 
separation gap that has been obtained from the stability analysis based on the corre- 
sponding MC isotherm. 

To illustrate the results of operating in the different regions. simulations of 
displacement separations were carried out with the IAS/L isotherm as described earli- 
er. With conditions chosen such that the operating line lies to the left of the gap. as 
shown in Fig. 4a, the calculated displacement profiles in Fig. 4b show that compo- 
nents A and B have separated into individual bands, with order AB. It is interesting to 
note that. because in this case the operating line lies above the intersection point of 
the parent isotherms, the concentration reached by A is higher than that of B, unlike 
in the classical picture of a displacement train [I I]. This serves to emphasize that 
although the crossing of the SC isotherms is indicative of selectivity reversal, the 
location of their intersection point per se does not correspond to the concentration of 
unit selectivity as might have been inferred from a superficial examination. 
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Fig. 4 (a) Crossing SC isotherms of components A and B and isotherm of the displacer showing an 
operating line lying to the left of the separation gap, and (b) displacement profiles calcualted using the 
IASiL isotherm for the same conditions. Plate number, N = 2800; feed. 20 mM A and 20 mM B in one 
column volume. Isotherm parameters: 1, = 150 pmol,‘ml sorbent, h, = 0.1 I,:mmol, 3., = 75 pmol/ml 
sorbent, b, = 0.7 Ummol; cx was calculated from eqn. 15 to be 50 mM. Displacer parameters as in Fig. 3; 
displacer concentration, 32 mM. 

Fig. 5. (a) Crossing SC isotherms of components A and B and isotherm of the displacer showing an 
operating line lying to the right of the separation gap and (b) displacement profiles calculated using the 
IASjL isotherm for the same conditions. Plate number, N = 10 000; feed. 5 mM A and 5 mM B in 1.25 
column volumes. Isotherm parameters: 3., = 150 ~mol;ml sot-bent, b, = 0.15 I/mmol, 1, = 90 jlmol/ml 

sorbent. h, = 0.33 l/mmol; c, was calculated from eqn. 15 to be 7.34 mM. Displacer parameters and 
concentrations as in Fig. 4. 

With conditions such that the operating line lies to the right of the separation 
gap, as depicted in Fig. 5a, the calculated displacement profiles shown in Fig. 5b 
display reversed selectivity, with bands appearing in the order BA as predicted from 
the above analysis. The plate number, N, chosen for this example was 10 000, indica- 
tive of a fairly difficult separation. A high plate number requirement for the calcula- 
tion translates in practice into the need for a long column. 

For the sake of comparison, we also carried out simulations by forcing the SC 
isotherms into the competitive Langmuir formalism. The results under conditions 
identical with those in Figs. 4 and 5 are shown in Fig. 6a and b, respectively. The 
bands in Fig. 6a appear in the same order and at the same concentrations, but are 
better separated than those in Fig. 4b. This is because the competitive Langmuir 
isotherm predicts a constant selectivity, a0 = uB/aA, at all concentrations, whereas 
with the IAS/L isotherm the selectivity ranges from +z”, its highest value at very low 
concentration, to some value close to unity at the higher concentrations of the final 



ISOTACHIC PATTERNS IN DISPLACEMENT CHROMATOGRAPHY 133 

30- a 

,_--. 

f 

E 

.g 20. 

5 

E 

d 'O 

301 b 

I 
6 6 

Column volumes 

c WMI 
a 10 20 30 
I 

150. 
a 

25 b c_____ , 

Column volumes 

Fig. 6. Displacement prohles calculated with the competitive Langmuir isotherm under conditions given in 
(a) Fig. 4b and (b) Fig. 56. 

Fig. 7. (a) Crossing SC isotherms of components A and B and isotherm of the displacer showing an 
operating line lying in the separation gap, and (h) displacement profiles calculated using the IAS,‘L iso- 
therm under the same conditions. Plate number, N = IO 000; feed, 20 mM A and 20 mM B in 0.5 column 
volume. Jsotherm parameters as in Figs. I and 3; displacer concentration, 25 mM. 

pattern. Therefore, in the latter instance, the overall selectivity is lower, and the 
separation is consequently more difficult. Under conditions where a reversed order is 
predicted by the IAS/L as the final outcome, the calculations with the Langmuir 
isotherm in Fig. 6b continue to show the bands appearing in the order of original 
selectivity. Fig. 6 therefore confirms the inadequacy of the competitive Langmuir 
isotherm for use in dynamic adsorption systems discussed earlier. 

A crude estimate of the difficulty of the separation can be determined from the 
selectivities at the inlet feed concentration and in the final pattern. For example, in the 
case shown in Fig. 4, the selectivity at the composition of the feed is 1.12, and at (cl, 
0) and (0, cg) it is 1.59 and 1.57. respectively. In contrast, the selectivity given by the 
ratio of Henry’s_law constants is 3.5. On the other hand, in the separation shown in 
Fig. 5, the selectivity, ERA, at the column inlet is 0.933 (i.e.. TAB = 1.07), at (cx, 0) it is 
0.646 (&,,j = 1.55) and at (0, CR*) it is 0.827 (x,&R = 1.21); however, the ratio of 
Henry’s_law constants. SI’, is 1.33. The long development required for this separation 
is largely due to the very low initial selectivity. It is interesting that the selectivities at 
the end points of the tie lines are different from each other; the consequence of this in 
Fig. 5B is that the tail of B is somewhat sharper than the front of A. 
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In order to investigate how the feed concentration affects the profiles calculated 
with the IAS/L isotherm, we have carried out numerous simulations with the same 
parent isotherms and operating lines as in Figs. 4a and 5a, but with feed concentra- 
tions that, in the hodograph space, lie across the line of unit selectivity from the 
predicted separated pattern. Although higher plate numbers were required to bring 
about the separation, final patterns of complete separation were always achieved. 
Thus, at least within the hermeneutics of the IASjL isotherm, the stability criterion 
appears to provide a sufficient condition for a given final pattern to eventually prevail. 

The sepururion gap: jbrmation qj’ azeotropes 

When the operating line lies in the separation gap. as illustrated in Fig. 7a, 
according to the stability analysis no completely separated state can be reached be- 
cause the pattern would be unstable. Indeed, the calculated profiles in Fig. 7b show 
no sign of any separation. This kind of mixed displacement profile has been reported 
[ 16,391. 

When operating in the separation gap, the final state eventually reached de- 
pends on the composition of the feed. Let us consider a displacement process, with the 
operating line in the gap, that has reached a coherent state, i.e., with concentration 
profiles lhat no longer change as the bands continue to traverse the column. As shown 
above. the final pattern of complete separation is unstable and hence a mixed zone 
must form. For the mixed zone to persist at a given composition. it must travel at the 
velocity of the displacer and the composition of the components must be such that the 
selectivity is unity (or else there is a tendency for change). Thus the composition of the 
mixed zone must lie on the line of unit selectivity in the hodograph. If the proportion 
of the two components in the feed differs from that of such a mixed zone, conserva- 
tion of mass dictates that there must be at least one other zone. In general, there could 
be several mixed zones that have the requisite properties; however, when adsorption 
is governed by the IAS/L isotherm, there is only one such mixed zone. Thus the other 
zone must be that of a pure substance. Depending on the relative amounts of the 
separands in the feed with respect to those of the mixed zone, the pure band contains 
either component A or B. 

The mixed zone represents an “azeotropic” composition, i.e., a mixed band that 
persists in the course of the displacement process. Unlike azeotropes in distillation 
which form only at one composition, all compositions along the unit selectivity line 
appear to be potential azeotropic points. Also. unlike in distillation, the azeotrope 
may be broken, at least in principle, simply by changing the displacer concentration 
so that the operating line moves out of the gap. Further, the elimination of any 
potential selectivity inversion or azeotropy by addition of another component may be 
possible as has been proposed [23,40] and is discussed later. 

What order of appearance is expected for the train of mixed and pure zones? 
Consider the situation where the pure band is component A. As in the “Gedanken 
experiments” conducted earlier, let us bring a trace of B from the mixed band into the 
domain of A. The hodograph in Fig. 3b shows that when the operating and tie lines 
lie in the separation gap, the point (cx, 0) is in the region of reversed selectivity. Thus 
the trace of B should move more rapidly than A and be pushed ahead. If the pure 
band were B instead, a trace of A brought into its domain would likewise be pushed 
ahead because the point (0. c$) is in the region of original selectivity. This forces us to 
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the conclusion that whether the pure band is of A or B, it must be located behind the 
mixed band. 

In an attempt to confirm these assertions, several simulations were performed 
with the operating line in the separation gap and with feed concentrations such that 
either A or B were in excess with respect to the anticipated mixed-zone composition. 
Under such conditions, the displacement train evolved extremely slowly; e.g., with 
parameters similar to those in Fig. 7, more than 15 000 plates were typically required 
before an unequivocal trend towards the expected final state could be discerned. The 
slow development is not surprising, because at the concentrations in question the 
selectivity is always close to unity. 

In order to circumvent the lengthy calculations, another approach was taken to 
examine the order of the mixed and pure bands. In the simulations the feed itself was 
introduced in the anticipated final state, i.e., with a mixed zone at the relevant compo- 
sition along the unit selectivity line, either preceded or followed by a pure band of A 
or B. (The anticipated mixed-zone composition was found by searching the unit 
selectivity line numerically for the point where its velocity is equal to that of the 
displacer). It was reasoned that if the feed pattern closely resembled the actual final 
state, the concentration profiles would show very little change. apart from dispersion, 
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Fig. 8. Displacement profiles calculated with input profiles having a pure zone of component A (-) and 

a mixed zone containing components A (-) and B(- - - -). In (a) the mixed zone precedes the pure zone 
into the column and in (b) the inlet order of zones is reversed. Parameters as in Fig. 7 with a displacer 
concentrations of 23 mM. The mixed zone composition lies along the unit selectivity line in Fig. 3b with 

CA = 8.8 and err = 5.42. The displacer profile is not shown. 

Fig. 9. Displacement profiles calculated with input profiles composed of a pure zone of B and a mixed zone 
containing components A and B as shown in the plots. All other conditions as in Fig. 8. 
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when the displacement proceeds over a significant length of column. The feed and 
corresponding effluent patterns from a 10 OOO-plate column when the pure band of A 
follows and precedes the mixed band are shown in Fig. 8a and b, respectively. The 
results are in accord with our expectations: when the pure band follows the mixed 
band, the change in the concentration profiles is minimal when the bands traverse the 
column. When the order of mixed and pure bands is reversed, however, the concen- 
tration profiles in the effluent no longer resemble the input profiles. In Fig. 9a and b, 
similar results are shown when the pure band is component B. 

Azeotropy with non-IAS multi-component isotherms 
All systems that display selectivity inversion are not likely to behave as the 

IAS/L isotherm predicts. In Appendix A, a result’ is derived that shows that all MC 
isotherms based on the IAS theory, regardless of the form of the parent isotherms (as 
long as they do not have points at which dq,/dc -+ cw,), are constrained in such a way 
that points of constant selectivity lie on straight lines in hodograph space. Further, it 
is shown that in such systems, if points of unit selectivity exist, they must lie on a line 
of slope - 1; eqn. 15 is a special case of this for Langmuir parent isotherms. Much as 
constant selectivity over the entire composition range is an artifact of the competitive 
Langmuir equation, this constraint is a shortcoming of IAS isotherms. The IAS 
approached represents a significant improvement over the MC Langmuir isotherm, 
as it can describe systems with variable selectivity, but it is by no means the only 
correct MC isotherm. Indeed, to describe real systems. non-idealities must often be 
incorporated. and the behavior may be considerably different form that predicted by 
the IAS method [22,37,38]. With this background, a brief discussion of selectivity 
reversal and azeotropy in non-TAS/L systems is presented here. 

With the IAS/L isotherm, the concentration c, always lies beyond the intersec- 
tion points of the SC isotherms. As a consequence. the operating lines in the ho- 
dograph, i.e., the tie lines, which lie in the separation gap are always less steep than 
the unit selectivity line, as shown in Fig. 3a. Thus, for tie lines within the gap, the 
points (0, CR*) and (cl, 0) always lie in the region of initial and opposite selectivity and 
the argument given above for the order of the mixed and pure bands always holds. On 
the other hand, if the adsorption were governed by some other MC isotherm so that 
the pertinent tie lines were now steeper than the unit selectivity line (which is not 
necessarily straight), the point (~2, 0) for a tie line that crosses the unit selectivity line 
would lie in the region of original selectivity, whereas (0, c$) would now lie in the 
region of reversed selectivity. The “Gedanken experiment” above would then yield 
the opposite result, and the pure band would be expected to precede the mixed one. 
With some MC isotherms the unit selectivity line may coincide with a tie line, and 
there is no separation gap or azeotropy even though the system exhibits selectivity 
reversal, as shown in Appendix B for the generalized multi-component Langmuir 
isotherm. 

These are only two examples of departure from the IAS/L MC isotherm. In a 
study of azeotropy in frontal chromatography, Basmadjian et al. [41] have pointed 
out several further possibilities for azeotropic systems that do not fall within the 
purview of the IAS method. For example, they consider two cases where the ho- 
dograph space is broken up into more than two regions of inverted selectivity. In such 
a system, if a suitable displacer were to be found, mere meeting of the stability 
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conditions discussed above may be insufficient to obtain separated displacement pat- 
tern from any previously mixed state. There is then no recourse but to search for all 
points on the concentration axes and the unit selectivity lines that have species veloc- 
ities equal to that of the displacer. and decide which combinations of such points 
would eventually evolve as the final state from a given feed composition. 

One system that shows simpler behavior than what has just been described. but 
is unlike that predicted by the IAS approach, is that of benzenesulfonic acid and 
p-nitrophenol adsorbed from aqueous solutions onto activated carbon [41]. Here the 
unit selectivity line appears to project outward from the origin of the hodograph. If a 
suitable displacer were chosen for this system, all possible tie lines would be found to 
intersect the unit selectivity line. It would therefore be impossible to obtain a com- 
pletely separated displacement train in this system regardless of the displacer concen- 
tration. By performing an analysis akin to that mentioned above, one can predict for 
such systems that the final pattern ought to be one where a pure band of either 
component, depending on the relevant feed and azeotropic compositions. precedes a 
mixed band. 

Eliminuting azeotropes by adding another component 
The results of this study show that selectivity reversal is in general detrimental 

to displacement chromatography, even when stable patterns of complete separation 
are expected. As suggested in previous studies, the addition of another component 
can be used to eliminate an possibility of azeotropy [23,40]. As we have not yet found 
a strategy by using a component merely added to the feed, we are considering here the 
addition of another component to the carrier. In order to determine the concentration 
of a component C required to ensure that there are no longer any points of unit 
selectivity in the CA-CB hodograph, we rearrange eqn. 11, written for three compo- 
nents and evaluated at l7 = n’ (see eqn. 14) to obtain 

CA + CB = 
kc 

exp(n’/&) - 1 > = 4cc) (16) 

The total concentration of unit selectivity, c,, is now seen to be a function of the 
concentration of the additive, cc. This concentration goes to zero at cc = [exp(n’/&) 
- l]/bc; above this the value of U is always greater than n’, and there will no longer 
be a unit selectivity line. However, the addition of a third component in such a 
manner is accompanied by both a reduction in the retention and the sorption capacity 
of components A and B. When this effect is large it may render the system useless for 
preparative separations [23,40]. The reduction in retention and the sorption capacity 
depends on Z7’, which is determined from the isotherm parameters of A and B alone 
and is thus largely independent of the particular components C employed. As a 
consequence, in systems where the reduction in sorption capacity by addition of a 
particular additive is too severe, it is not likely that the use of another additive will be 
successful. In such cases, it would be necessary to change other conditions, such as 
pH, temperature or even the sorbent itself in order to eliminate completely the un- 
wanted selectivity reversal. 
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APPENDIX A 

After presenting an outline of the IAS method an expression is derived for the 
points of constant selectivity in hodograph space that is generally valid for multi- 
component isotherms based on the ideal adsorbed solution (TAS) approach and facil- 
itates the analysis of such MC isotherms. 

The IAS method 
The IAS approach provides a framework to generate thermodynamically con- 

sistent multi-component adsorption isotherms from any set of single-component iso- 
therm data [21,22]. The basic hypothesis is that the adsorbed phase is “ideal” in sense 
corresponding to Raoult’s law in liquid-vapor equilibria. That is, the fluid phase 
concentration, ci, of a component i in equilibrium with the adsorbed phase is related 
to a standard state concentration, cy by 

ci = z&f i= I,...,N (A-1) 

where 3i is the mole fraction of i in the adsorbed phase and N is the total number of 
adsorbed components. In adsorption from liquid solutions, the adsorbed phase is 
defined by the “solvent-not-adsorbed” convention and therefore the mole fraction 
does not include the principal solvent [22]. The standard state is defined as a system 
containing only the component i (and the principal solvent) at the same temperature 
and spreading pressure as the multi-component system being considered. The spread- 
ing pressure, ;n, is the difference between the solution-sorbent interfacial tension and 
the pure reference solvent-sorbent interfacial tension. A reduced spreading pressure. 
L!, is defined as rcA/RT, where A is the surface area of the sorbent assumed to be 
equally accessible to all adsorbates, R is the gas constant and T is the temperature. 
The standard state concentration cy is not a constant at a given temperature, as is the 
saturation vapor pressure in Raoult’s law. but depends on I7 which varies with the 
composition of the multi-component mixture. The relationship between n and c; is 
determined from the Gibbs’ adsorption equation and the adsorption isotherm for a 
single component using the expression [22] 

n = s 4iki) 
--ddrj 

ci 
0 

i= l,...,N (A-2) 

where qi(ci) is the pertinent SC isotherm. Note that since qi and ci are always positive, 
in the absence of conditions under which dqi/dci + r-1, l7 is a single-valued function 
of cl and rice versa. As the concentrations. ci, in multi-component solution are 
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known, and the sum of the mole fractions in the adsorbed phase is unity, l7 can be 
determined in principle form the single equation 

N 

c ci -=I 
c;(n) 

j= 1 

(A-3) 

This equation can be employed in practice only when an explicit relationship for ci as 
a function of n can be found from eqn. A-2. For example, eqn. 11 corresponds to this 
equation written for the case where the single-component isotherms have the Lang- 
muirian form. If the integral in eqn. A-2 cannot be solved analytically and the func- 
tion cannot be inverted explicitly, other numerical methods must be employed to 
determine n [42]. Once n and therefore cl are known, then zi for each component can 
be found from eqn. A- 1. 

It can be shown that the total adsorbed amount on the stationary phase, qr, is 
given by [22] 

q, =L 
Iv 

c Zj 

z 
j= 1 

(A-4) 

where qQ is the stationary phase concentration of i in equilibrium with cl in the 
respective single-component system. The adsorbed amounts of each component, qi, 
are then simply given by 

qi = ZiqT (A-5) 

Eqn. 12 is a combination of eqns. A-4 and A-5 written in terms of l7 and ci for the 
case of SC Langmuir isotherms. 

Constant selectivity with IAS isotherms 
Here it is shown that the selectivity for any two components, in the case of MC 

isotherms obtained by the IAS method, is a function of the reduced spreading pres- 
sure, II. Further, it is shown that for nearly all forms of the parent isotherms in a 
binary system with two components A and B, the locus of constant selectivity, xBA, in 
a hodograph of CB versus CA, is a straight line of slope - l/‘aBA. It follows then that, if 
they exist, points of unit selectivity in any binary IAS isotherm lie on a straight line of 
slope - 1. 

Combining eqns. A-l and A-5 yields 

The selectivity *for two components, 
selectivity is thus seen to be 

%BA? is defined as from eqn. A-6 the 

(A-6) 
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cwv 
agA = c”B(l7) 

(A-7) 

which is a function of n only (besides the parameters of the parent isotherms). 
Combining equation A-3 written for a binary system with eqn. A-7 and rear- 

ranging the result yields 

CB = 

Thus the loci of constant a BA (or of constant n) are straight lines of slope - l/aBA in 
the hodograph space. Eqn. A-8 is meaningful only when CL and CL are single-valued 
functions of II, which is always the case as long as there are no points on the SC 
isotherms at which dqi/dci + W. Note that in general there could be several values of 
17 for which the selectivity is the same, and consequently several parallel lines in the 
hodograph having the same selectivity. Eqn. 15 in the text is a special case of eqn. A-8 
written for aBA = 1 and Langmuir SC isotherms. 

APPENDIX B 

Generalized multi-component Langmuir isotherm with selectivity inversion 
Here another thermodynamically consistent MC isotherm is presented that can 

account for cases where the individual components have different saturation capac- 
ities. The derivation is essentially a simple extension of the equilibrium arguments 
that lead to the competitive Langmuir isotherm, and it is therefore called the general- 
ized multi-component Langmuir (GML) isotherm. (The isotherm may well have been 
described before, but we could not find any reference to it. It is formally similar to the 
multivalent ion-exchange isotherm [43], with the exception that no electroneutrality 
condition must be satisfied at the sorbent surface). This isotherm formalism will then 
be used in the same way as he IAS/L isotherm was in the main body of the text, to 
examine the different operating regions of displacement chromatography. 

The generalized multi-component Langmuir isotherm 
Consider the set of binding reactions 

i + vi@ e i@,, i= l,...,N (B-1) 

where iis one of N species in the liquid phase, 0 is a free binding site on the sorbent, Vi is 

a stoichiometric coefficient and iO,,i represents i in the adsorbed state on the stationary 
phase. The equilibrium constants, Ki, for the process are represented by 

Ki = 4i 
Ci[ O]” 

i= l,...,N 

where qi and ci are the respective concentrations of i in the stationary and mobile 
phases and [O] represen t the concentration of free binding sites. If the total concen- 

(B-2) 

tration of binding sites is /i, one can write 
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N 

PI + c Vjqj - -A 

j=l 

Substitution of eqn. B-2 into eqn. B-3 yields 

N 

PI + 7 VjKjCj[O]"' = A 
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(B-3) 

WV 
/ 
j=l 

Although eqn. B-4 can in general have multiple solutions, it has only one solution 
that lies in the range 0 < [O] < /i, as more than one stationary phase composition in 
equilibrium with a given mobile phase condition is excluded from this treatment. 
When this solution is found for [O], the concentrations of the N species in the station- 
ary phase are obtained on rearranging eqn. B-2 as 

qi = KiCj[O]“’ i=l N , ***, (B-5) 

It is noted that eqns. B-5 and B-4 reduce to the competitive Langmuir equation when 
all the stoichiometric coefficients, Vi, are unity. 

The corresponding parent isotherm for component i is given by the implicit 
expression 

qi = KiCi(A - Vjqi)vi i= I,...,N (B-6) 

This isotherm has the initial slope KiA”’ and saturation capacity /l/lpi- Fitting of 
experimental single-component isotherm data to this equation is a non-trivial exercise 
because, in order to ensure a unique value of il, all the isotherms involved must be fit 
simultaneously. These difficulties are not germane here, however, as the concern is 
how a set of components that follow such an isotherm would behave in displacement 
chromatography. 

Selectivity inversion 
The selectivity, ~QBA when eqn. B-5 holds is given by 

qBCA KB[@]“” 
CIBA = - = ~ 

qACB KA[@lvA 

Thus, when CCBA is unity, the corresponding concentration of free sites, [O]‘, is 

(B-7) 

1 

[@I’ = $4 vB-VA ( > R 
(B-8) 
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As mentioned above, [0]’ must lie between 0 and /i. Thus. with the GML isotherm. 
selectivity inversion will occur only when 

1 

(B-9) 

This condition is satisfied for 1’ R > \‘A when KBA“R > K..J\‘A, and vice versa, i.e., 

whenever the parent isotherms cross. 
On substituting eqn. B-8 into eqn. B-4 we find that the locus of unit selectivity in 

cA-cH hodograph space is a straight line given by 

(B-1Oa) 

This line has slope - Y A/YB. and intercept cb given by 

(B-lob) 

Operating regimes for ctispIacen2erft clwonlatograph~* 
To determine the different operating regimes in the case of crossing isotherms 

for the multi-component isotherm formalism given by eqn. B-5, we examine first the 
equation of the tie line that connects those points on the CA and cH axes in the 
hodograph which correspond to the intersections of the respective parent isotherms 
with an operating line of slope d. The intersection points with the parent isotherms 
can be found from eqn. B-6 to be 

i=A,B (B-l 1) 

The tie line that connects (0, c$) and (~a, 0) in the hodograph is given by the equation 
CR = CR * - (c$/c~)c.~. Expressing the pertinent concentrations from eqn. B-11 we 
obtain that the slope of this tie line. n?T, is given by 

(B-12) 

The term in square brackets on the right-hand side of eqn. B-12 becomes unity at 

(B-13) 
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After some algebraic manipulation, it can be shown that at this value of A, rb = CL. 
Thus the tie line passing through C; has the same slope, - L’~/v~, as the unit selectivity 

line. Additionally, one can show that no tie line actually crosses the unit selectivity 
line. Thus, within the framework of the GML isotherm, when the parent isotherms of 
A and B cross there are two operating regions, separated from each other by an 
operating line of slope A*. These regions correspond to final patterns of complete 
separation with different order of the components: for operating lines of slope greater 
than A* the order is AB, and for those with slope lower than A* it is BA. 
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